A simple model of burst nucleation.
نویسندگان
چکیده
We introduce a comprehensive quantitative treatment for burst nucleation (BN)-a kinetic pathway toward self-assembly or crystallization defined by an extended post-supersaturation induction period, followed by a burst of nucleation, and finally the growth of existing stable assemblages absent the formation of new ones-based on a hybrid mean field rate equation model incorporating thermodynamic treatment of the saturated solvent from classical nucleation theory. A key element is the inclusion of a concentration-dependent critical nucleus size, determined self-consistently along with the subcritical cluster population density. The model is applied to an example experimental study of crystallization in tetracene films prepared by organic vapor-liquid-solid deposition, where good agreement is observed with several aspects of the experiment using a single, physically well-defined adjustable parameter. The model predicts many important features of the experiment, and can be generalized to describe other self-organizing systems exhibiting BN kinetics.
منابع مشابه
An empirical technique for prediction of nucleation mechanism and interfacial tension of potassium chloride nanoparticles
Prediction of the nucleation mechanism is one of the most critical factors in the design of a crystallization system. Information about the nucleation mechanism helps to control the size, shape, size distribution, and purity of the produced crystals. When the crystallization method is used for producing nanoparticles, the nucleation mechanism should be predicted. In this study, an empirical cor...
متن کاملA Comprehensive Empirical Correlation for prediction of Supersolubility and Width of the Metastable Zone in Crystallization
Prediction of supersolubility and the width of the metastable zone has been a major concern among the workers in the field of industrial crystallization. Operation of crystallizers under the optimum supersaturation low enough to attain the desired product quality (Median Particle Size, Crystal Size Distribution (CSD), Shape, Purity) being one motif. The inherent relationship between the sub...
متن کاملColumnar modelling of nucleation burst evolution in the convective boundary layer – first results from a feasibility study Part IV: A compilation of previous observations for valuation of simulation results from a columnar modelling study
In the preceding Papers I, II and III a revised columnar high-order modelling approach to model gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed, and simulation results of two synthetic nucleation scenarios (binary vs. ternary) on new particle formation (NPF) in the anthropogenically influenced CBL were presented and discussed. The purpose of the present f...
متن کاملGas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts
Simple models are developed to describe the formation of particles from condensable vapours in different atmospheric circumstances. The models are designed for use in large scale global transport models, where sub-grid descriptions are required for such phenomena. We solve the evolution equation for the density of a condensable vapour. When the concentration of existing aerosol is low, nucleati...
متن کاملPreparation and Evaluation of Poly (s-caprolactone) Nanoparticles-in- Microparticles by W/O/W Emulsion Method
Objective(s) Theophylline, a xanthenes derivative, is still widely used as an effective bronchodilator in the management of asthmatic patients. It is used both as a prophylactic drug and to prevent acute exacerbations of asthma. The aim of study was to formulate and evaluate effect of the microencapsulation of theophylline loaded nanoparticles on the reduction of burst release. Materials and Me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 32 شماره
صفحات -
تاریخ انتشار 2015